Sign up for our daily briefing

Make your busy days simpler with Axios AM/PM. Catch up on what's new and why it matters in just 5 minutes.

Please enter a valid email.

Please enter a valid email.

Subscription failed
Thank you for subscribing!

Catch up on coronavirus stories and special reports, curated by Mike Allen everyday

Catch up on coronavirus stories and special reports, curated by Mike Allen everyday

Please enter a valid email.

Please enter a valid email.

Subscription failed
Thank you for subscribing!

Denver news in your inbox

Catch up on the most important stories affecting your hometown with Axios Denver

Please enter a valid email.

Please enter a valid email.

Subscription failed
Thank you for subscribing!

Des Moines news in your inbox

Catch up on the most important stories affecting your hometown with Axios Des Moines

Please enter a valid email.

Please enter a valid email.

Subscription failed
Thank you for subscribing!

Minneapolis-St. Paul news in your inbox

Catch up on the most important stories affecting your hometown with Axios Twin Cities

Please enter a valid email.

Please enter a valid email.

Subscription failed
Thank you for subscribing!

Tampa Bay news in your inbox

Catch up on the most important stories affecting your hometown with Axios Tampa Bay

Please enter a valid email.

Please enter a valid email.

Subscription failed
Thank you for subscribing!

Charlotte news in your inbox

Catch up on the most important stories affecting your hometown with Axios Charlotte

Please enter a valid email.

Please enter a valid email.

Subscription failed
Thank you for subscribing!

Please enter a valid email.

Please enter a valid email.

Subscription failed
Thank you for subscribing!

Photo illustration: Axios Visuals

Artificial intelligence researchers have tried unsuccessfully for decades to give machines the common sense needed to converse with humans and seamlessly navigate our always-changing world. Last month, Paul Allen announced he is investing another $125 million into his Allen Institute for Artificial Intelligence (AI2) in a renewed effort to solve one of the field's grand challenges.

Axios spoke with Yejin Choi, an AI researcher from the University of Washington and AI2 who studies how machines process and generate language. She talked about how they're defining common sense, their approach to the problem and how it's connected to bias.

How do you define common sense?

"Common sense is fairly trivial everyday knowledge that we have about people and about the world. It's knowledge about how the world works — how people think, what motivates them, how they act, and why they do what they do."

"Imagine there's a robot in your household in the future, and you want to store leftover pie in a container. The robot should pick a container that's large enough to store that pie, and today that spatial reasoning relative to physical properties of different objects in the world and how you interact with them are not quite well represented in these system models."

Why common sense poses a challenge to machines:

"We have a world model in our mind when we do daily operations. AI systems today, despite tremendous advancement in recent years, they are not very good at generalizing out of pure example, so they tend to be very, very task specific, and very domain specific."

"A machine translation system may seem like it understands some language enough to translate into another language, but actually there's not that much understanding happening, per se, because that syntax knowledge cannot be reused for making very trivial small talk with a human, for example."

Their approach:

"We have this commonsense knowledge without our parents or teachers having to enumerate all of it one by one. Nobody told us that elephants are usually bigger than butterflies, however we can reason about it. You ask me that question, I can think about it, and I can answer that question even though I've never seen that statement explicitly written anywhere."

"We're taking a similar approach. It may be possible that we can learn to answer these sort of questions, even including those that we've never seen before. That's fundamentally the ability that AI systems needs to have — dealing with unknowns and previously unseen situations."

What data is needed to make common sense models?

"There is a paper called Verb Physics, and in that work the dataset is basically a combination of a lot of natural language documents — a huge corpus of how people use language and from that we look for patterns. For example, what kind of things do I throw? What kind of things do I enter into? I enter my house. I exit my house. And, that sort of implies that my house must be bigger than me for me to enter into and exit from."

"So, we can infer different action dynamics, preconditions, and post conditions — all those different physical objects, for me to do some action involving them."

"The short term goal is to develop a common sense benchmark dataset. Then, the ultimate goal is to acquire knowledge that's good enough to do well in that benchmark dataset. That's step one."

The issue of AI and human bias:

"We showed [in a study of movie scripts last year] how women in movies carry much less power compared to men. It's the kind of actions that they do and the kind of language they use when they speak. Men usually fight and they do stuff, they save the world. Women, on the other hand, they tend to wait, they are being watched, and they look pretty. What they do tends to be pretty passive."

"It's one of my passions to develop AI technology that can detect all these biases in humans and also, ideally, be able to correct them in the future."

How is bias connected to common sense?

"These are connected in that the way bias is coming across, often times can be inclusive or implied. Current models are much better at understanding what's explicitly stated, but less good at anticipating what's not said. It's good to be catching some of the explicit biases, but it's important to also detect all of the implied ones because that still influences us. The ability to read between the lines ultimately is what requires common sense, so that's the connection between the two."

Go deeper

Republicans pledge to set aside differences and work with Biden

President Biden speaks to Sen. Mitch McConnell after being sworn in at the West Front of the U.S. Capitol on Wednesday. Photo: Erin Schaff-Pool/Getty Images

Several Republicans praised President Biden's calls for unity during his inaugural address on Wednesday and pledged to work together for the benefit of the American people.

Why it matters: The Democrats only have a slim majority in the Senate and Biden will likely need to work with the GOP to pass his legislative agenda.

The Biden protection plan

Joe Biden announces his first run for the presidency in June 1987. Photo: Howard L. Sachs/CNP/Getty Images

The Joe Biden who became the 46th president on Wednesday isn't the same blabbermouth who failed in 1988 and 2008.

Why it matters: Biden now heeds guidance about staying on task with speeches and no longer worries a gaffe or two will cost him an election. His staff also limits the places where he speaks freely and off the cuff. This Biden protective bubble will only tighten in the months ahead, aides tell Axios.

Bush labels Clyburn the “savior” for Democrats

House Majority Whip James Clyburn takes a selfie Wednesday with former President George W. Bush. Photo: Patrick Semansky-Pool/Getty Images

Former President George W. Bush credited Rep. James Clyburn with being the "savior" of the Democratic Party, telling the South Carolinian at Wednesday's inauguration his endorsement allowed Joe Biden to win the party's presidential nomination.

Why it matters: The nation's last two-term Republican president also said Clyburn's nod allowed for the transfer of power, because he felt only Biden had the ability to unseat President Trump.