Oct 22, 2018 - Technology

Study: AI could improve doctors' treatment of sepsis

A new AI tool improved doctors' decisions in treating patients with sepsis.

An AI tool shows promise in improving treatment of sepsis. Photo: BSIP/UIG via Getty Images

Researchers have developed an artificial intelligence tool that improved doctors' treatment of patients who developed sepsis, a deadly blood infection that can quickly shut down vital organs if not treated swiftly and correctly, according to a new report published in Nature Medicine Monday.

Why it matters: Nearly 270,000 Americans die every year from sepsis, and "improving treatment even by a couple percentages [improvement] will save tens of thousands of lives each year," study author Anthony Gordon says.

Background: Sepsis occurs when the body has an infection somewhere that triggers a body-wide immune response that can lead to tissue damage, organ failure, amputations and death.

  • Requiring quick response from a medical team, treatment usually includes antibiotics, intravenous fluids and sometimes a vasopressor drug to constrict blood vessels and raise the patient's blood pressure.
  • However, the timing and amount of fluids or drugs is tricky for doctors to know.

What they did: The researchers developed a machine-learning algorithm that looked retrospectively at data from 96,000 patients in U.S. hospital intensive care units.

  • The tool, called AI Clinician, retrieved 48 variables for each patient, including demographics, vital signs, age and what fluids or vasopressors were already administered.
  • It uses machine-learning called "reinforcement learning" — where the AI will compare a patient's variables to those in its database to determine what the best amount of fluid and timing of vasopressor might be.
  • Using a separate set of data, they then tested the algorithm against decisions made by doctors.

What they found: In comparing the results of the decisions AI Clinician would have made with the results from the doctors' decisions, they found patients who had received the same treatment as suggested by AI Clinician had the lowest mortality rate, Imperial College London's Gordon says.

  • They also noted that where clinicians varied from the AI Clinician was, on average, to administer too much fluids and not enough vasopressor, but this depended on the individual patient.
  • "It's a tool to help physicians make better decisions about their patients," co-author A. Aldo Faisal says.

Outside perspective: Hebrew University's Yonatan Loewenstein, who was not part of this study, says the use of large datasets and AI is key.

"The advantage of it being retrospective is very clear. Large datasets are routinely collected and stored in hospitals and clinics around the world. These datasets exceed experience of any single clinician. Machine-learning techniques can potentially be used to process these large datasets to find regularities and rules that would be missed by the unaided clinicians," Loewenstein tells Axios.  

Yes, but: As Danny McAuley of Queen’s University of Belfast points out, the algorithm still needs to be tested in real-time. "These results look really encouraging... However, it has not been used to change any patients' care yet. These are simulations. They look very encouraging but of course this will need further testing in clinical trials like all new treatment strategies," says McAuley, who was not part of this study.

Go deeper