Sign up for our daily briefing
Make your busy days simpler with Axios AM/PM. Catch up on what's new and why it matters in just 5 minutes.
Stay on top of the latest market trends
Subscribe to Axios Markets for the latest market trends and economic insights. Sign up for free.
Sports news worthy of your time
Binge on the stats and stories that drive the sports world with Axios Sports. Sign up for free.
Tech news worthy of your time
Get our smart take on technology from the Valley and D.C. with Axios Login. Sign up for free.
Get the inside stories
Get an insider's guide to the new White House with Axios Sneak Peek. Sign up for free.
Catch up on coronavirus stories and special reports, curated by Mike Allen everyday
Catch up on coronavirus stories and special reports, curated by Mike Allen everyday
Want a daily digest of the top Denver news?
Get a daily digest of the most important stories affecting your hometown with Axios Denver
Want a daily digest of the top Des Moines news?
Get a daily digest of the most important stories affecting your hometown with Axios Des Moines
Want a daily digest of the top Twin Cities news?
Get a daily digest of the most important stories affecting your hometown with Axios Twin Cities
Want a daily digest of the top Tampa Bay news?
Get a daily digest of the most important stories affecting your hometown with Axios Tampa Bay
Want a daily digest of the top Charlotte news?
Get a daily digest of the most important stories affecting your hometown with Axios Charlotte
New and old machine-learning tools are helping scientists sift through the flood of research produced on COVID-19.
Why it matters: The coronavirus pandemic has led to an unprecedented wave of scientific publications on every aspect of the virus and potential treatments.
- But without better tools to pick out meaningful research, it's too easy to miss the science that matters — or be misled by headline-grabbing papers that turn out to be wrong.
By the numbers: According to the COVID-19 Primer, a public dashboard created by the machine-learning company Primer AI, researchers had published 27,569 papers about COVID-19 as of June 17.
- Of those, 21,000 went through the scientific peer review process, meaning that experts in the field have examined the publications and researchers have more confidence in the results. 6,569 are what are known as preprint papers, meaning they were put out to the public before the peer review process.
- "The volume is so great that what's being published on COVID is equal to all the other research that is usually being put on infectious disease as a whole," says Uri Blackman, CEO of GIDEON Informatics, which has put out medical databases since 1992.
- It is impossible for a human being to keep up with all that science. Even if it only took an average of 15 minutes to read each paper, getting through all of them would require 287 days of nonstop reading, or more than 100 days longer than the outbreak itself.
How it works: That's where machine-learning tools come in.
- While current AI can't understand a scientific paper in the way that a trained human being can, it is capable of categorizing and ordering it in a way that reveals useful patterns. And it can do so much quicker than any human being can.
- The COVID-19 Primer takes in news articles and social media interactions that reference papers and their authors, which allows a user to quickly see which papers are getting the most attention from experts and average people alike.
- Papers can also be sorted through research categories like "patient and medical care" or "forecasts and modeling," and the algorithms behind the tool can also identify topics of interest that emerge from the entire corpus of research.
The catch: There are still major limits to AI's ability to actually comprehend written text of any kind, including scientific publications. That means the COVID-19 Primer and similar tools can't tell you the real value of any individual paper, just how it's being received in the news and on social media.
- In fact, says Amy Heineike of Prime AI, "the most shared papers are the most controversial ones." She notes that the second-most-shared paper since the start of the outbreak was a preprint publication from the end of January arguing the novel coronavirus appeared to contain genes from the HIV virus, with the implication that the virus was deliberately engineered.
- The paper — which like all preprints wasn't peer reviewed — was quickly torn apart by experts online, and was withdrawn by its authors just a few days after it was posted. But 20% of the tweets about the paper were posted in the days and weeks after its withdrawal, which was seen by many online as evidence of a conspiracy to suppress its conclusions.
The bottom line: Science is moving faster than ever on COVID-19, and AI can be a valuable tool to making sense of it all. But machines can't yet be a replacement for human judgment.
Go deeper: Fresh concerns about AI bias in the age of COVID-19