May 14, 2019 - Science

The violent deaths of the first stars

A photo of a supernova explosion in deep space.

The remnants of a supernova explosion. Photo: NASA/CXC/SAO

The first stars born just millions of years after the Big Bang are thought to have been massive, bright balls of helium and hydrogen, with heavy elements like carbon, zinc and iron forming in their cores.

Driving the news: A new study published in the Astrophysical Journal details how these stars died, seeding the universe with elements that eventually gave rise to our sun, planets, other stars and more.

What they found: The new study suggests that when these stars turned into supernovas, they didn’t explode in a spherical ball. Instead, new research shows the explosions were actually asymmetrical, shooting powerful jets of heavy elements out into neighboring galaxies.

What they did: The scientists studied the star HE 1327-2326, which is thought to be a surviving second-generation star that formed after the first generation of stars exploded.

  • The star was very rich in zinc, which the researchers argue could only happen if a first generation star exploded and seeded HE 1327-2326’s part of space with the heavy element.
  • And a series of 10,000 simulations showed the only way to explain the zinc signal in the star — which is located about 5,000 light-years away — was if a first generation star asymmetrically exploded.
“The working hypothesis is, maybe second generation stars of this kind formed in these polluted virgin systems, and not in the same system as the supernova explosion itself, which is always what we had assumed, without thinking in any other way. So this is opening up a new channel for early star formation."
— Anna Frebel, co-author of the new study, said in a statement.
Go deeper