Sign up for our daily briefing
Make your busy days simpler with Axios AM/PM. Catch up on what's new and why it matters in just 5 minutes.
Catch up on coronavirus stories and special reports, curated by Mike Allen everyday
Catch up on coronavirus stories and special reports, curated by Mike Allen everyday
Denver news in your inbox
Catch up on the most important stories affecting your hometown with Axios Denver
Des Moines news in your inbox
Catch up on the most important stories affecting your hometown with Axios Des Moines
Minneapolis-St. Paul news in your inbox
Catch up on the most important stories affecting your hometown with Axios Twin Cities
Tampa Bay news in your inbox
Catch up on the most important stories affecting your hometown with Axios Tampa Bay
Charlotte news in your inbox
Catch up on the most important stories affecting your hometown with Axios Charlotte
Jean Lachat / University of Chicago
Neutrinos are some of the most common particles in the universe, but they're also some of the most mysterious. They have (almost) no mass and no charge, and can pass through solid objects (and entire planets) like we pass through air. But scientists at Duke University have successfully detected these 'ghost particles' doing something no one has seen before: scattering off the nucleus of an atom.
Why it matters: Currently, scientists study neutrinos by measuring the energy produced when they interact with a proton or neutron — a very rare event. Now that scientists know they can detect neutrinos scattering off a nucleus, they might be able to use them to detect supernovas, or use a similar technique to detect dark matter scattering off of nuclei, reports Science News.
Physicists say understanding neutrinos is crucial to our understanding of the universe. They're produced by nuclear fusion and radioactive decay. Some scientists think neutrinos might be a part of why the universe is made up of matter and not antimatter.
Not quite a game changer: Forty years ago, researchers hypothesized that neutrinos would scatter a certain way if they interacted with a nucleus, according to the standard model of physics. In this experiment, the neutrino scattered exactly as predicted (and the standard model is safe... for now.)
Handheld physics lab: Not only are neutrinos really, really hard to observe, most of the equipment currently used to detect them is really, really big and expensive. For example, the proposed India-based Neutrino Observatory requires a 50,000 ton calorimeter. But the researchers in this experiment used a detector about the same size as a champagne bottle.