Sign up for our daily briefing
Make your busy days simpler with Axios AM/PM. Catch up on what's new and why it matters in just 5 minutes.
Catch up on coronavirus stories and special reports, curated by Mike Allen everyday
Catch up on coronavirus stories and special reports, curated by Mike Allen everyday
Denver news in your inbox
Catch up on the most important stories affecting your hometown with Axios Denver
Des Moines news in your inbox
Catch up on the most important stories affecting your hometown with Axios Des Moines
Minneapolis-St. Paul news in your inbox
Catch up on the most important stories affecting your hometown with Axios Twin Cities
Tampa Bay news in your inbox
Catch up on the most important stories affecting your hometown with Axios Tampa Bay
Charlotte news in your inbox
Catch up on the most important stories affecting your hometown with Axios Charlotte
Nathaniel Butler / ASU
When stars die and collapse to form black holes, a powerful explosion — second only to the Big Bang itself — occurs. These gamma-ray bursts take place billions of light years away. Across space and therefore time, they're a window into the early universe that opens for just a few milliseconds to a minute. By the time a telescope is turned, they're typically gone.
Last year though, researchers were able to observe an unusually bright one — GRB 160625B, pictured above— using six telescopes on the ground and in space. They caught it early to enough to measure strong changes in the polarized light of the burst for the first time. "That, in turn, tells us that the release of magnetic energy is an important ingredient in these exotic explosions," says Arizona State University's Nathaniel Butler.
A new picture: Spiraling electrons cause radiation that powers magnetic jets in the first moments of the explosion. The magnetic fields then break down and are largely replaced by matter from the dying star that falls into the black hole and is ejected again. Researchers have known about these two processes but thought only one was responsible. Now, it seems it could be both.